Improving Patient-Centered Workflow with Clinical Decision Support Systems

Robert A. Jenders, MD, MS, FACP, FACMI
Associate Professor, Department of Medicine
Cedars-Sinai Medical Center
University of California, Los Angeles USA
Co-Chair, Clinical Decision Support Technical Committee, HL7

18 October 2006

Overview: CDSS

• Rationale: Why do we need decision support, and what is it?
• Process: Developing decision support interventions
• Information system infrastructure: data, terminology, data model
• Putting it all together: Decision engine, knowledge representation & standards

Take-Home Messages

• Clinical Decision Support System ≠ Computer system
 – People matter!

• Clinical Decision Support System ≠ Decision support engine
 – Data infrastructure is key!

• Clinical Decision Support System ≠ One-time CDSS purchase
 – Knowledge maintenance is important!

I. CDSS Need: Medical Errors

Estimated annual mortality

- Air travel deaths: 300
- AIDS: 16,500
- Breast cancer: 43,000
- Highway fatalities: 43,500
- Preventable medical errors: 44,000 - (1 jet crash/day) 98,000

Costs of Preventable Medical Errors

Annually:

- USA: Only 54.9% of adults receive recommended care for typical conditions
 – community-acquired pneumonia: 39%
 – asthma: 53.5%
 – hypertension: 64.9%

- Delay in adoption: 10+ years for adoption of thrombolytic therapy

...180,000 people die each year partly as a result of iatrogenic injury...
What is Clinical Decision Support?

Different Levels

- **Organization of Data:** the CIS / EHR
- **Stand-Alone Expert Systems**
 - often require redundant data entry
- **Data Repository:** Mining
- **CDSS Integrated into Workflow**
 - push information to the clinician at the point of care
 - examples: alerting in EHR, CPOE

Examples (continued)

- **Reminders of Redundant Test Ordering**
 - intervention: reminder of recent lab result
 - result: reduction in hospital charges (13%)
- **CPOE Implementation**
 - Population: hospitalized patients over 4 years
 - Non-missed-dose medication error rate fell 81%
 - Potentially injurious errors fell 86%
- **Systematic review**
 - 68 studies
 - 66% of 65 studies showed benefit on physician performance
 - 9/15 drug dosing
 - 1/5 diagnostic aids
 - 14/19 preventive care
 - 19/26 other
 - 6/14 studies showed benefit on patient outcome

Case Studies:

Examples of CDSS Effectiveness

- **Perioperative Antibiotic Administration**
 - intervention: reminder re timing and type of abx
 - period: 1988 - 1994
 - result: perioperative wound infections dec 1.8% - > 0.9%
 - avg # doses: 19 -> 5.3
 - overall antibiotic cost (constant $) per treated patient: $123 -> $52

CDSS Role in Optimizing Throughput

- **Clinical/Patient Safety**
 - Avoiding preventable ADEs
 - Enhancing compliance with guidelines
- **Administrative Alerting**
 - Resource assignment vs insurance coverage (formularies, bed classification, etc)
 - Billing correctness (E/M coding)
 - Resource utilization (vaccine supplies, bed availability)
Developing Decision Support Interventions: CDS Implementers’ Workbook

• Goal: Provide practical advice to organizations implementing decision support
 – Iterative implementation process
 – Practical tools: worksheets, etc
• Part of the HIMSS Patient Safety Task Force

http://www.himss.org/cdsworkbook/

The Steps

I. Document/prioritize drivers
II. Catalog infrastructure
III. Select interventions
IV. Establish logistics
V. Launch interventions
VI. Evaluate impact => enhance

Step #1: Identify Goals

• Support disease management initiatives
• Improve clinical performance: safety & quality
• Foster evidence/guideline-based practice
• Improve reimbursement; reduce cost
• Improve communication
• Improve regulatory/reporting/accreditation compliance
• Address clinician/patient questions

Step #1: Stakeholders and Other Sources of Goals

• Institutional analyses: cost, safety, quality…
 – Committees: P&T, UR, QI, Patient Safety…
 – Data driven: analytical tools
• Local Stakeholders
 – Interviews, surveys, observation
• Community priorities and programs
• Promising targets
 – Strong evidence/quality measures
 – Systematic analyses – external

Step #1: Decomposing Goals Into Measurable Objectives

High-level goal / program: Patient safety

Focused Goal: Decrease medication errors / ADE’s

Objective: Decrease severe drug interactions
Objective: Prevent therapeutic duplication
Objective: Prevent allergic reactions to drugs

Step #2: Identify What (Systems) You Have

• Catalog all information systems and their data
• Identify what kind of decision support those IS can provide (or you can build)
• How can multiple systems be synthesized to support goals?
Step #3: Selecting Interventions => CDS Types

- Forms and templates (encounter documentation)
- Relevant data presentation (flowsheets, CPM)
- Order sets
- Integrated guidelines (active guidelines)
- Reference information (links/infobuttons)
- Reactive/unsolicited alerts (drug interactions)

Step #3: Workflow Opportunities

Step #4: Validate/Build/Develop Logistics

- What, when, who, where, how
- Establish feedback mechanisms
- Identify evaluation parameters
- Finalize content of interventions

Step #5: Test & Roll Out Interventions

- Test & validate content before roll-out
- Develop roll-out plan and schedule
- Establish mechanism for feedback to content and manner of interventions
- Cultivate clinician-champions

Step #6: Evaluate Effect and Feed Back

- Assess utilization of interventions
- Gather user responses to interventions
- Assess process and clinical outcomes in terms of previously identified outcome variables
- Feed back into process (choice of goals, choice of mechanisms, logistics)

III. Infrastructure

- Necessary underpinning to decision support initiatives
- **Key Elements**
 - Data
 - Terminology
 - Central data repository (Data model)
Acquisition of Clinical Data: Requirements

- Electronic format (allows automated processing)
- Communication network
 - Use of standards (HL7) to facilitate interchange between different vendors
- Data model / repository: Share data among applications

Structured Data: How do we get it?

- Direct entry/capture
 - Captured from devices (lab, vital signs monitor, etc)
 - Entered by human beings using structured forms
- Transform after the fact
 - Computer-assisted e-coding & NLP
Uses for Structured / Coded Data

- **Clinical care**: Sharing data from disparate sources
 - Integration in a CDR

- **Decision support**: Automated interpretation of data

- **Public health**: Surveillance across a population

(continued)

- **Research**: Pool data to discover new knowledge

- **Quality assurance**: Detect risks and intervene

- **Administration**: Manage resources

- **Reimbursement**: Justify payment for services

Standard Vocabularies: Examples

- **Endorsed by CMS** (45 CFR 162 = HIPAA requirement, final rule adopted 20 Feb 2003)
 - ICD9-CM
 - NDC (retail pharmacies)
 - CPT-4
 - HCPCS
 - Code on Dental Procedures & Nomenclature

More Standards:

- **Consolidated Health Informatics Initiative**
 - HL7: messages
 - NCPDP: ordering from pharmacies
 - IEEE 1073: Medical Information Bus (devices)
 - DICOM: imaging
 - LOINC: laboratory, vital signs
 - SNOMED CT: lab results contents, non-lab intervention/procedures, anatomy, dx/problems, nursing
 - Federal med terminologies: FDA (ingredients, manufactured forms, packages), NLM RxNorm (clinical drugs), VA NDF-RT (classification)

Standard Data Models: HL7 RIM

- **High-level, abstract model of all exchangeable data**
 - Concepts are objects: Act (e.g., observations), Living Subject, etc
 - Object attributes
 - Relationship among objects

- **Common reference for all HL7 v3 standards**

Schwam G, Recker RC, Mead CS, McDonald CJ. Integrating medical information and knowledge in the HL7 RIM. Free ASMA Symp 2000; 704-748.
IV. Putting It All Together: CDSS & Standards

- Use integrated data (CDR, vocabulary) + knowledge to provide decision support

- Key elements of the CDSS
 - Event monitor
 - KR formalisms
 - Delivery mechanisms (email, fax, pager, EMR)

CDSS: Integrating Data

- Clinical Event Monitor
 - Architecture:
 - Check data (events) being stored
 - Trigger appropriate procedural knowledge
 - Notify clinical user of relevant data and conclusions
 - Typical Output: alerts and reminders
 - routed via email, beeper, fax, EMR
 - Examples:
 - HELP System (LDS Hospital)
 - CUMC
 - Vendor HIS/EMR software

HL7 Standards

- Data standards
 - Messaging (v2.x, v3)
 - Data model (RIM)
 - Documentation (CDA)
 - Application integration (CCOW)
 - EHR Functional Model and Specification

- Decision support
 - Arden Syntax
 - Infobuttons
 - Order sets
 - GELLO & guideline standard

Guideline Models: Arden Syntax

 - Adopted by several major vendors

- Formalism for procedural medical knowledge

- Unit of representation = Medical Logic Module (MLM)
 - Enough logic + data to make a single decision
 - Generate alerts/reminders

Reference:
Infobutton Standard

- **Infobutton**: Application that mediates queries of knowledge sources by clinical applications (EHRs, etc)

- **Process**
 - Clinical information system invokes infobutton manager (IM) with patient/user data
 - IM creates 1+ infobuttons, each = different kind of query
 - User chooses infobutton to execute query against a knowledge source, which displays response

Order Sets

- **Rationale**: Considerable effort expended to develop order sets
 - Goal: Preserve and share

- **Different levels**
 - Document model: Maintain and share as a unit
 - Execution model: Use within a CPOE system

- **Current status**: Draft in progress

CPOE

- **CDSS Method**: Brings together many different kinds of decision support: order sets, drug interaction checking, order validation

- **Challenge**: Expensive, pervasive change (~5% use)

- **Issues**
 - May give rise to errors
 - May uncover pre-existing problems with governance and workflow

Summary

- **Decision support**: Broad definition, great need

- **Developing interventions**: Determine priorities, engage stakeholders, obtain widespread support
 - = organizational change

- **Information infrastructure**
 - Data (acquisition)
 - Terminology
 - Data model

- **CDSS**: Attention to knowledge delivery and format (standards)

Take-Home Messages

- **Clinical Decision Support System ≠ Computer system**
 - People matter!

- **Clinical Decision Support System ≠ Decision support engine**
 - Data infrastructure is key!

- **Clinical Decision Support System ≠ One-time CDSS purchase**
 - Knowledge maintenance is important!
Thank You!

• IQPC

• California HealthCare Foundation, grant 05-1549

jenders@ucla.edu
http://www.bol.ucla.edu/~jenders/